Veblen hierarchy #
We define the two-arguments Veblen function, which satisfies veblen 0 a = ω ^ a and that for
o ≠ 0, veblen o enumerates the common fixed points of veblen o' for o' < o.
Main definitions #
veblenWith: The Veblen hierarchy with a specified initial function.veblen: The Veblen hierarchy starting withω ^ ·.
TODO #
- Define the epsilon numbers and gamma numbers.
- Prove that
ε₀andΓ₀are countable. - Prove that the exponential principal ordinals are the epsilon ordinals (and 0, 1, 2, ω).
- Prove that the ordinals principal under
veblenare the gamma ordinals (and 0).
Veblen function with a given starting function #
veblenWith f o is the o-th function in the Veblen hierarchy starting with f. This is
defined so that
veblenWith f 0 = f.veblenWith f oforo ≠ 0enumerates the common fixed points ofveblenWith f o'over allo' < o.
Equations
- One or more equations did not get rendered due to their size.
Instances For
veblenWith f o is always normal for o ≠ 0. See isNormal_veblenWith for a version which
assumes IsNormal f.
veblenWith f o is always normal whenever f is. See isNormal_veblenWith' for a version
which does not assume IsNormal f.
Alias of Ordinal.isNormal_veblenWith.
veblenWith f o is always normal whenever f is. See isNormal_veblenWith' for a version
which does not assume IsNormal f.
veblenWith f o₁ a < veblenWith f o₂ b iff one of the following holds:
o₁ = o₂anda < bo₁ < o₂anda < veblenWith f o₂ bo₁ > o₂andveblenWith f o₁ a < b
veblenWith f o₁ a ≤ veblenWith f o₂ b iff one of the following holds:
o₁ = o₂anda ≤ bo₁ < o₂anda ≤ veblenWith f o₂ bo₁ > o₂andveblenWith f o₁ a ≤ b
veblenWith f o₁ a = veblenWith f o₂ b iff one of the following holds:
o₁ = o₂anda = bo₁ < o₂anda = veblenWith f o₂ bo₁ > o₂andveblenWith f o₁ a = b
Veblen function #
veblen o is the o-th function in the Veblen hierarchy starting with ω ^ ·. That is:
Equations
- Ordinal.veblen = Ordinal.veblenWith fun (x : Ordinal.{?u.6}) => Ordinal.omega0 ^ x