Documentation

Mathlib.Algebra.Order.Field.InjSurj

Pulling back linearly ordered fields along injective maps #

@[deprecated Function.Injective.isStrictOrderedRing (since := "2025-04-10")]
theorem Function.Injective.linearOrderedSemifield {R : Type u_1} {S : Type u_2} [Semiring R] [PartialOrder R] [Zero S] [One S] [Add S] [Mul S] [SMul S] [Pow S ] [NatCast S] (f : SR) (hf : Injective f) [IsStrictOrderedRing R] (zero : f 0 = 0) (one : f 1 = 1) (add : ∀ (x y : S), f (x + y) = f x + f y) (mul : ∀ (x y : S), f (x * y) = f x * f y) (nsmul : ∀ (n : ) (x : S), f (n x) = n f x) (npow : ∀ (x : S) (n : ), f (x ^ n) = f x ^ n) (natCast : ∀ (n : ), f n = n) :

Alias of Function.Injective.isStrictOrderedRing.


Pullback a IsStrictOrderedRing under an injective map.

@[deprecated Function.Injective.isStrictOrderedRing (since := "2025-04-10")]
theorem Function.Injective.linearOrderedField {R : Type u_1} {S : Type u_2} [Semiring R] [PartialOrder R] [Zero S] [One S] [Add S] [Mul S] [SMul S] [Pow S ] [NatCast S] (f : SR) (hf : Injective f) [IsStrictOrderedRing R] (zero : f 0 = 0) (one : f 1 = 1) (add : ∀ (x y : S), f (x + y) = f x + f y) (mul : ∀ (x y : S), f (x * y) = f x * f y) (nsmul : ∀ (n : ) (x : S), f (n x) = n f x) (npow : ∀ (x : S) (n : ), f (x ^ n) = f x ^ n) (natCast : ∀ (n : ), f n = n) :

Alias of Function.Injective.isStrictOrderedRing.


Pullback a IsStrictOrderedRing under an injective map.